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Abstract

The view of poverty as a multidimensional phenomenon has swiftly become mainstream. However,
the debate remains open as to how such ‘multidimensional poverty’ should be assessed in practical
settings, particularly when identifying the beneficiaries of poverty alleviation programmes. This pa-
per develops a novel empirical approach that explicitly takes into account the goals and needs of the
policy-maker. In particular, the paper takes up the case of a government official running a budget-
constrained programme to alleviate a few dimensions of poverty, and translates her concerns into
a set of desiderata which the multidimensional measure should meet. The policy-maker targeting
ability and aversion to the risk of leakages play crucial roles in setting the desired properties. We
illustrate our methodology in the context of a CCT programme in Peru, and show that it improves
expected leaking and undercoverage relative to alternative Alkire-Foster based approaches.

JEL codes: I3 I32 D63 O1 H1.
Keywords: Multidimensional poverty, targeting, Peru.

1 Introduction
The literature on poverty has welcomed the concept of multidimensionality as a timely reminder that
poverty cannot be reduced to monetary shortfalls, since the latter do not fully capture the total set
of dimensions in which a person may suffer from severe hardship. However, while the view of poverty
as a multidimensional phenomenon has swiftly found a place within the mainstream of the field, the
debate remains open as to how such ‘multidimensional poverty’ should be empirically assessed. This
should come as no surprise, since it is a challenging task to produce a formula specifying precisely how
shortfalls across a variety of dimensions compound to distress a family.

In this paper we take a different viewpoint and focus on the goals and needs of the policy-maker.
Our proposed measure will not aim at greater consistency with the nature of the predicament of the
household. Instead, we argue that a multidimensional measure would be of greater use to policy-makers,
and of wider use among them, if their concerns and the practicalities of their work were explicitly taken
into account. We propose a measure placing these needs at the root of its specification.

As pointed out elsewhere, no single value can summarise the multi-faceted nature of poverty. Any
multidimensional measure is bound to miss information, and may well mislead analyses if it fails to
capture those pieces of information which matter most to the questions at hand. As this paper proposes
a particular measure for multidimensional poverty aiming to inform actual policy, it explicitly focuses
on the questions and ‘operational’ needs of the policy-maker, even at the cost of overlooking the details
of how hardships frustrate individual lives. In particular, the paper takes up the case of a government
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official running a budget-constrained programme to alleviate a few dimensions of poverty, and translates
her concerns into a set of desiderata which the multidimensional measure should meet. Difficulties in
targeting and aversion to the risk to leakages play crucial roles.

For instance, in the eyes of our policy-maker, a location where many individuals are free from poverty
in every dimension will be a location with a high risk of delivering aid packages into the hands of people
with no need of such packages, not even of parts of them. If her targeting ability is weak, a location
where everyone suffers poverty in at least some dimension may be a safer choice. Considerations in this
vein will lead us below to impose restrictions on the cross-derivatives of our multidimensional index.
Likewise, its marginal rate of substitution will be required to reflect that the policy-maker will not fail
to notice severe unidimensional hardship. So to speak, paying attention to multiple dimensions should
not blind her to evident suffering, while on the other hand it should alert her to the risk of leaking her
resources through multiple channels.

The paper embeds such concerns into our multidimensional measure from the onset, i.e. from the
specification of how individual achievements in each dimension impact on the assessment of their multi-
dimensional poverty. By this route, we come to the conclusion that a homothetic specification will suit
best these concerns, and for simplicity, within the set of homothetic functions, we opt for a measure
with a constant elasticity of substitution across dimensions.

Path-breaking efforts to clarify how to measure multidimensional poverty include Bourguignon &
Chakravarty (2003), Tsui (2002), Deutsch & Silber (2005). They build on the properties of unidimen-
sional poverty measures, and formulate sets of axioms transporting those properties to, and addressing
the new issues raised by, the multidimensional case. This paper draws on these approaches. We however
pay particular attention to the double-cutoff index developed by Alkire & Foster (2011), since it has
arguably become the most common multidimensional measure among policy-makers, not least because
this counting method is simple to implement and, crucially, because it easily deals with qualitative
dimensions, such as access to sanitation or basic health services. Since budget constraints typically
imply that staff will not be sufficiently trained to deal with complex estimations, both simplicity and
conformity to data availability are attributes much appreciated by policy-makers. However, we argue
below that other attributes would be just as desirable, and yet a sum of FGT unidimensional indices,
such as AF, fails to secure them.

The rest of the paper is organized as follows. Section 2 lays down a set of axioms for a policy-oriented
multidimensional poverty measure. Section 3 presents our preferred measure. Section 4 implements our
targeting methodology in the context of a CCT programme in Peru and assesses its performance. Sec-
tion 5 concludes and discusses policy implications.

2 Properties
Recall we take the viewpoint of the policy-maker, and in particular we embrace her interest to run social
programmes with as much efficacy as possible. In this case, a multidimensional index serves the policy-
maker chiefly by enabling her to rank all possible beneficiaries and thus select which of them should
be cared for first. With such an index driving her targeting efforts, she may operate her programmes
fluently. In particular, she should not halt her work when she sees that, say, Adam is severely deprived
in dimension 1 but free from poverty in dimension 2, whereas Bob suffers only mild hardship in both
dimensions. To negotiate such conflicts between dimensions by means of a set of socially acceptable
criteria, we define axioms which we then impose on our multidimensional index.

In particular, the defining characteristic of our policy-maker will be her wariness at the possibility of
wasting the resources entrusted to her, and even at the threat of being accused of such waste. She will
be mindful of her own difficulties to prevent leakages of her resources into the hands of non-targeted
individuals and will exhibit risk aversion.

We first lay down our notation. Imagine a budget-constrained social programme aiming to impact r
dimensions, each d-th dimension characterised for each i-th individual by an outcome xid. Define matrix
X = [xid], column-vector xd = [x1d . . . xnd] and row-vector xi = [xi1 . . . xir], where n is the number of
possible beneficiaries. Row-vector z = [z1 . . . zr] contains all r unidimensional poverty lines, and let 1
denote a row-vector with all elements equal to 1. For all i and d, impose hereafter xid ≥ 0 and zd ≥ 0.
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When r = 1, a number of well-accepted measures of unidimensional poverty can guide spending.
When r > 1, targeting is less straight-forward because dimensions need not be positively correlated over
the population – e.g. in the case of Adam and Bob above, xA1 < xB1, but xA2 > xB2.

Hereafter, to assess multidimensional poverty mi for any i-th individual,

mi = φ(xi; z) (1)

where we assume that for any xi and z, φ(.) is continuous and differentiable in xi, both to simplify
proofs below and to prevent small changes in xid from causing abrupt changes in mi. For later use, let
φd(xi; z) ≡ ∂φ(xi;z)

∂xid
and φde(xi; z) ≡ ∂2φ(xi;z)

∂xid∂xie
.

As usual in the literature, we further define aggregate multidimensional poverty M as the average
of individual multidimensional indices:

M = 1
n

n∑
i=1

mi (2)

We now proceed to our axioms, which we group into three categories: properties directly drawn from
the theory on unidimensional measures, properties governing how different dimensions are combined
into the single multidimensional measure, and lastly properties capturing the policy-maker’s efforts to
use the available resources as efficiently as possible.

2.1 Basic properties
Our first four axioms are akin to the usual properties of unidimensional measures, and we state them
without further discussion:

Scale invariance (ScI). φ(xi; z) = φ(xiΛ; zΛ) for any definite-positive diagonal matrix Λ.
Changes in measurement units for the outcome of any dimension have no bearing.

Monotonicity (Mo). φd(xi; z) ≤ 0 for any xid. Keeping outcomes for all other dimensions un-
altered, an increase in the outcome of any dimension can never entail a rise in multidimensional poverty.

Focus (Fo). φd(xi; z) = 0 if xid > zd. Changes in outcomes above the unidimensional poverty line
are not allowed to impact on multidimensional poverty.

Boundedness (Bo). Minxiφ(xi; z) = 0 and Maxxiφ(xi; z) = 1. The lower- and upper-bounds are
0 and 1, respectively, and act as reference values to judge whether multidimensional poverty is ‘low’ or
‘high’.

2.2 Substitutability properties
Our next set of properties addresses a question absent in unidimensional analyses – can high outcomes
in some dimensions substitute for deprivation in some others? Should someone under severe deprivation
in one dimension receive greater (or less) attention than, say, someone else facing only mild hardship,
but in all dimensions? In the case of Adam and Bob above, who should be targeted first?

To our knowledge, the literature has thus far sought the answer to these questions in the nature
of individual well-being, i.e. do high achievements in some aspects of Adam’s life actually alleviate his
sufferings in other spheres? This is no simple question. Indeed, perhaps no proper and general answer
exists.

Consider instead the viewpoint of the policy-maker. When it comes to targeting decisions, failure
to capture correctly the actual degree of substitutability between dimensions creates the risk of e.g.
withdrawing support from individuals enduring patent, verifiable shortfalls (as Adam) in the wrong be-
lief that other achievements in their lives will lessen their pains. The policy-maker will understandably
refuse to incur in, or be accused of, such misjudgements.
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To expand on this point, we note that any specification of φ(xi; z) implies some assumption about
how dimensions substitute (or fail to substitute) for each other, and a multidimensional measure re-
quires the policy-maker to be willing to embrace that particular guess. In particular, we hereafter use
the marginal rate of substitution sde to measure the ability of an additional unit of dimension d to make
up for losses in dimension e:

sdei = φd(xi; z)
φe(xi; z) (3)

Our focus on sdei is akin to the approach in Ravallion (2012) – there, if any “change entails that one
dimension increases at the expense of another then it is the marginal rate of substitution that tells us
whether human development is deemed to have risen or fallen. Only if we accept the tradeoffs built into
such a composite index can we be confident that it is adequately measuring what it claims to measure”
(p. 201).

To capture the concerns above, we formulate the following three axioms:

Symmetry across dimensions (Sy). φ(xi; z) = φ(xiB; zB) for any bi-stochastic matrix B.
There is no change if dimensions are relabelled, so that all dimensions receive equal treatment. Neither
will some dimensions receive greater weights than others, nor will some pair of dimensions relate to each
other in a particular manner (e.g. in terms of substitutability), different from the relationship between
any two other dimensions. If desired, a weaker version of this symmetry could be invoked to allow for
dimension-specific weights.

Sensitivity to unidimensional hardship (UH). ∂sdei
∂xie

> 0 for any d and e 6= d. The lower
the outcome in any e-th dimension, the more difficult for any other dimension to make up for further
decreases in that troubled dimension, i.e. substitutability decreases when hardship deepens in a given
dimension. When this property holds, the willingness to accept that an individual facing unidimensional
poverty can cope with it due to her higher achievements elsewhere weakens when that unidimensional
poverty becomes more severe – the policy-maker will refuse to turn a blind eye on manifest hardship,
however unidimensional it might be.

Sensitivity to severe unidimensional hardship (SUH). If xie = 0, then sdei = 0. If depriva-
tion in one dimension is extreme, improvements in other dimensions are entirely meaningless. While this
property may be read as a stronger version of UH, it is important to note that it also sets an absolute
reference for the degree of concern for unidimensional hardship, which under SUH requires more than
just a relative increase in sdei if hardship intensifies. Added to UH, this property secures concerns for the
unidimensionally deprived will be consequential, as policy-makers plausibly wish. Alternative versions
of this axiom could define severity at values other than zero, e.g. sdei = 0 if xie ≤ x̂e.

2.3 Efficiency properties
Policy-makers are typically haunted by budget constraints. In particular, our policy-maker will exhibit
risk aversion as she faces up to the possibility that part of her funds may prove fruitless. She will be
wary of her own inability to reach her intended beneficiaries. Our next two properties are motivated by
the intention to avoid leakages. While the first property will consider the case of a policy-maker with
poor observation and enforcement abilities, the second one will imagine these abilities are in place. In
practice, either stance will result in a specific constraint on the cross-derivative φde(xi; z).

Minimal leakage with weak targeting ability (WTA). For any d and e, φde(xi; z) < 0. A
budget-constrained, risk-averse policy-maker should be wary of a positive correlation across dimensions
if her targeting ability is weak, since the threat of significant leakage will loom on her.

Minimal leakage with strong targeting ability (STA). For any d and e, φde(xi; z) > 0.
In spite of her risk aversion, a budget-constrained policy-maker with a strong targeting ability will dare
to use a positive correlation across dimensions to seek a higher impact of her resources.

We now explain the rationale for these properties. Drawing first from a prior result of the literature,
we recall that, since our aggregate index M in (2) follows an additive specification, the cross-derivative
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φde(xi; z) will govern how it reacts to changes in the correlation among dimension outcomes. In partic-
ular, a greater positive correlation causes an increase in M if φde(xi; z) > 0.1

Next, to consider what a positive correlation across dimensions entails for the policy-maker, compare
cases (I) and (II) below.

Table 1

(I) (II)
Dimensions Dimensions
1 2 1 2

Individual 1 0.80 0.20 0.20 0.20
Individual 2 0.20 0.80 0.80 0.80

With no change in the marginal distribution of outcomes for each dimension, cases (I) and (II) differ
because in the latter case individual 1 is poorer than individual 2 in both dimensions. The literature on
multidimensional poverty calls this an ‘increasing correlation switch’, and again, efforts to pronounce
judgement on it typically endeavour to understand how dimensions compound in distressing a house-
hold, e.g. how much harder is it for individual 1 above to endure a low x12 if now x11 is also low?

We take a different stance. Imagine z1 = z2 = 1 and a risk-averse policy-maker runs a programme
to raise outcomes in both dimensions and with enough resources to reach only one individual. If we let
(I) and (II) describe two scenarios and the policy-maker had to select one of them, then (II) provides
her with an opportunity to maximise the impact of the programme, if only she can ensure individual 1
is the sole beneficiary – otherwise, the whole of her resources will go wasted. We argue that the choice
of a risk-averse policy-maker will hence depend on her ability to observe individual outcomes and target
accordingly.

On the one hand, if the policy-maker has sufficient trust in her targeting ability and can ensure
that only individual 1 can access the programme, then M should rank (II) above (I). This is secured by
φde(xi; z) > 0, as in STA.

On the other hand, if she realises her difficulties to target correctly are a hurdle, then the ranking
may well reverse. (I) provides certainty about the amount of ‘leaked’ resources – regardless of which
individual is chosen as beneficiary, 50% of resources will be devoted to raising an outcome which is
already as ‘high’ as 0.80. In case (II), the expected ‘leakage’ is also 50%, but uncertainty haunts the
policy-maker – with a 50% probability, individual 2 is selected as beneficiary and all resources are leaked.
Recall our policy-maker is risk averse. Hence, with insufficient targeting ability, a positive correlation
is now something to fear, and by imposing φde(xi; z) < 0, WTA will prioritise (I) above (II).

Adding some further structure to the example in Table 1 may illustrate further the choice between
STA and WTA. Let the b-th individual be the actual beneficiary. Temporarily, keep n = r = 2, and
assume that outcomes are tradable and that the programme at hand delivers (z1, z2) to this b-th in-
dividual, so that she escapes poverty even if (xb1, xb2) = (0, 0). The policy-maker is mindful of other
social goals beyond this programme. Hence, she will see (xb1, xb2) as resources that have been spent
unnecessarily, since only (z1 − xb1, z2 − xb2) would suffice to lift the beneficiary out of his poverty.

To account for imperfect targeting ability, the intended beneficiary will have only a λ probability
of actually having access to the programme, so that someone else gets away with the benefits with
probability (1− λ). Assume λ ≥ 1

2 and let targeting ability be measured by a monotonically increasing
function T (λ):

T (λ) = λ

1− λ (4)

where T (λ) ≥ 1 because with targeting ability at its lowest, λ = 1
2 and the beneficiary could just as

well be determined by tossing a coin.

1To see why, let n = 2, r = 2 and x̂d > x̌d for d = 1, 2. Note then [φ(x̂1, x̂2) + φ(x̌1, x̌2)] − [φ(x̂1, x̌2) + φ(x̂1, x̌2)] =∫ x̂2
x̌2

∫ x̂1
x̌1

φ12(x1, x2)dx1dx2, where for simplicity we omit z from φ(xi; z).
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Take a strong positive correlation as a starting point. To this end, assume individual 1 is poorer
in every dimension (x11 < x21 and x12 < x22) and hence the intended beneficiary. In this case, the
risk-averse policy-maker will seek the minimise the expected (risk-adjusted) loss of resources L:

L(x1,x2) = λ (x11 + x12)µ + (1− λ) (x21 + x22)µ (5)

where µ > 1 to secure risk aversion.

Imagine now a correlation-reducing transfer of the outcome of either dimension from individual 2 to
individual 1. The policy-maker will welcome this reduction in correlation (i.e. ∆L < 0) whenever her
targeting ability fails to reach a threshold T̃ :

If T (λ)
{
<
=
>

}
T̃ , then ∆L

{
<
=
>

}
0 (6)

where T̃ =
(
x21+x22
x11+x12

)µ−1
.2

Intuitively, with limited targeting ability (below T̃ ), the policy-maker would welcome the decrease
in correlation because a strong positive correlation means that poor outcomes will be concentrated in
the intended beneficiary. In such a case, failure to reach her would mean that the actual beneficiary was
already free from poverty in every dimension. For the policy-maker, this amounts to the daunting risk
of a ruinous waste of resources if they ended up in the wrong hands. This is our WTA case. Note risk
aversion plays a crucial role. Greater risk aversion (i.e. higher µ) raises the ability threshold T̃ further
up, and few policy-makers escape this dread of waste.3

When targeting ability is strong enough (that is, above T̃ ), we have our STA case. ∆L > 0, so
that when poor outcomes are concentrated in one individual, the fears described above are not forceful
enough to cloud the view of a good opportunity – the policy-maker will confidently aim to turn this
intended beneficiary into the actual beneficiary.

We close this section with three remarks. First, note our argument is reminiscent of the dilemma
between ‘risk equity’ and ‘catastrophe avoidance’ in Keeney (1980) – the policy-maker may dislike to
see all predicaments agglomerating on one individual (to the detriment of ‘equity’), but the threat of
widespread hardship (‘catastrophe’) would be a bleak alternative. As in Keeney (1980), the dilemma
boils down to a decision about the cross-derivative φde(xi; z).

Second, this implies that targeting ability will play a very clear role in the case of geographical
targeting, since the correlation of dimension outcomes within locations will drive the choice of the
policy-maker. For instance, if cases I and II in Table 1 above describe two locations, then the policy-
maker will rank them following her choice between WTA and STA.

Third, note again that as we pay attention to the target ability and the risk aversion of the policy-
maker, we disregard whether the dimensions at hand are complements or substitutes in the so-called
ALEP sense. We realise that our prescriptions may therefore collide with viewpoints focusing on e.g.
how much individual 1 suffers under case II in Table 1 (say, because dimensions are substitutes to each
other and low outcomes in both dimensions amount to unabashed hardship). With our proposal, this
concern would bow to the fear of leakage under WTA. We are explicit about this departure from the
literature, because as we argue above, the question about the nature of individual predicaments and
whether dimensions substitute for or complement each other has in our view no cogent answer. In
contrast, the policy-maker does know about her practical difficulties and about the consequences of her
leakages. For this same reason, we have ignored the ∆L = 0 case in (6). In the absence of the answer
about how dimensions behave, it may be tempting to say dimensions do not interact, as indeed any
additive multidimensional measure does, but we think no policy-maker will remain indifferent to the
choice between WTA and STA.

2To see why, note that for ∆x11 = −∆x21 > 0, ∆L = µ(1 − λ) (x11 + x12)µ−1
[

λ
1−λ −

(
x21+x22
x11+x12

)µ−1
]

∆x11
3Indeed, absence of risk aversion (i.e. µ ≤ 1) would discard T (λ) < T̃ , since T (λ) ≥ 1 and x21+x22

x11+x12
> 1.
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3 A targeting-oriented measure of multidimensional poverty
We now seek a measure conforming to the axioms above. Where a choice is in order, we opt for the path
leading to a simpler specification. Since the skills of the staff running social programmes are typically
heterogeneous, we see simplicity as a crucial feature of a proposal intending to suit the needs of policy-
makers. After presenting our preferred measure in Subsection 3.1, we next discuss in Subsection 3.2
how it compares with the measure of widest current use, namely the Alkire-Foster double-cutoff index.

3.1 A homothetic measure of multidimensional poverty
To begin with, we note that ScI and Fo jointly imply that every piece of meaningful information in xid
and zd is captured by a standardised, censored outcome x̃id:

x̃id ≡ Min
[
1, xid
zd

]
(7)

Define accordingly X̃, x̃d and x̃i, so that hereafter,

mi = ψ(x̃i), where ψ(x̃i) ≡ φ(x̃i; 1) (8)

We next invoke SUH, which requires that for any d 6= e, no value of x̃id should override the fact that
sdei = 0 if xie = 0. For instance, and recalling (3),

ψd(x̃i)
ψe(x̃i)

= θde(x̃i|e)x̃ρie, with ρ 6= 0 (9)

where x̃i|e is a row vector identical to x̃i, but omits x̃ie, and θde(x̃i|e) is an unrestricted function. Alter-
native specifications for sdei would equally secure sdei = 0 regardless of x̃i|e, but we opt for the simpler
route.4

Given Sy, (9) also implies ψe(x̃i)
ψd(x̃i) = θed(x̃i|d)x̃ρid, so that[

θde(x̃i|e)x̃ρid
] [
θed(x̃i|d)x̃ρie

]
= 1 (10)

which entails θde(x̃i|e) = x̃−ρid . Resorting again to (9), this leads to our main result:

sdei =
(
x̃ie
x̃id

)ρ
(11)

Hence, a simple measure of multidimensional poverty satisfying ScI, Fo, Sy and SUH must be written
as follows:

mi = ψ(x̃i), where ψ(·) is homothetic. (12)

Homotheticity restricts the set of available forms for ψ(·), but does not confine it to one single choice.
We again invoke simplicity and opt for a specification with constant elasticity of substitution as the
simplest among the set of homothetic functions (Clemout 1968):

ψ(x̃i) = ζ(µ), where


ζ(µ) is a monotonic transformation
µ = [

∑r
d=1 x

γ
id]

1
γ

γ = 1− ρ 6= 1, given (9)
(13)

To select a specific form for ζ(µ), it will suffice to invoke Mo and Bo.

4For instance, sdei = θ(x̃i|e)x
θ̂(x̃i|e)
ie , or sdei = θ(x̃i|e) (axie − 1) where a > 0, or a sum of all these choices.
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In particular, given Bo and Mo, ζ ′(µ) < 0, ζ(0) = 1 and ζ(1) = 0. To take a simple instance,

ζ(µ) = 1− µβ where β > 0 (14)

Lastly, UH imposes γ < 1, and hence we can write as follows the final version of our multidimensional
measure:

mi =
{

1− [
∑r
d=1 x̃

γ
id]

β
γ , for γ < 1 and γ 6= 0

1− (
∏r
d=1 x̃id)

β , for γ = 0
(15)

where the limiting case γ = 0 is a well-known result.

Note that in choosing values for β and γ, the policy-maker will in practice opt for either WTA or
STA, in keeping with how strong she feels her ability to identify and effectively target her preferred
beneficiaries. In particular, γ > β is necessary for STA to hold.

Importantly, the limiting case with γ = 0 implies β > γ and hence is always committed to WTA.
For this reason, mi = 1 − (

∏r
d=1 x̃id)

β may be a convenient rule-of-thumb choice for countries with
weaker targeting abilities. Risking some ambiguity, we will hereafter refer to it as the WTA index

3.2 Comparison with the double-cutoff measure
Adding an indicator function I [·] to our notation and assuming all dimensions are equally weighted, the
AF family of measures can be written as follows:

m
AF (α)
i = ωi

(
1
r

r∑
d=1

(1− x̃id)α
)
, where ωi = I

[
r∑

d=1
I [x̃id < 1] ≥ k

]
(16)

As Alkire and Foster suggest themselves, the AF specification in (16) builds on the well-known FGT(α)
index for individual, dimension-specific poverty, with α ≥ 0. The key postulate in AF is that such
unidimensional hardship should matter only if ωi 6= 0, i.e. if for the i-th individual the count of di-
mensions below their unidimensional poverty lines is at least as high as k. Most of the latest efforts
to target and evaluate social spending with a multidimensional view have adopted and adapted this
version of the double cutoff approach for targeting purposes. For example, Azevedo & Robles (2013)
develop a version of the AF index in order to target a Conditional Cash Transfer (CCT) programme in
Mexico. More recently, Diaz et al. (2015) also follow the AF principles to develop an index that first
identifies deprivations at the individual level, and then aggregates them at the household level to obtain
a multidimensional deprivation index.

By means of the axioms in Section 2, we now turn to examine how the AF index fares as a targeting
tool.. We take the α = 0 and α > 0 cases in turn. First, when α = 0, the measure boils down to the
count of dimensions below their unidimensional poverty lines – to say it again, provided that count is
at least as high as k:

m
AF (0)
i = ωi

(
1
r

r∑
d=1

I [x̃id < 1]
)

(17)

This double-cutoff individual index thus turns into a double-counting index in its aggregate ver-
sion M . First, dimensions in hardship are counted for each individual, and then the individuals with
more than k such dimensions are counted within the population. This formulation of multidimensional
poverty has been widely used, not least because of its simplicity and, in particular, because it easily
handles qualitative outcomes, which are only observed as yes-no conditions.

Under α = 0, AF meets all our basic properties (ScI, Mo, Fo, Bo), as well as Sy if no dimension-
specific weights are imposed. UH, which requires sdei to increase in xie, is harder to assess, because the
dichotomous nature of yes-no outcomes rules out successive increases in any one dimension. Nonetheless,
we note first that both below and above the k-threshold, sdei remains stable (at 0 and 1, respectively),
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regardless of the value of xie.5 Next, we see that in the vicinity of the threshold, sdei diminishes follow-
ing a switch from xie = 0 to xie = 1.6 If anything, we must say that AF fails to exhibit sensitivity to
unidimensional hardship when α = 0. SUH is likewise violated, since sdei = 0 does not necessarily follow
from xie = 0. For instance, sdei = 1 in the case just said, when the number of deprived dimensions is
high enough to surpass the k-threshold.

As for targeting abilities, the double-counting index sides with neither WTA nor STA, at least suf-
ficiently away from the k-threshold, since the impact of xid on mAF (0)

i is then constant (at either 0 or
1) and hence φde(xi; z) = 0. In the vicinity of the threshold, the impact is erratic.7 Policy-makers using
the double counting index should bear in mind this behaviour as a caveat, which adds to the likely
unease of wielding a tool with no sensitivity to severe deprivation when it is ‘only’ unidimensional.

We now turn to the α > 0 case, which pays attention to the gap between the unidimensional
poverty line and the actual outcome for the relevant dimension. As compared to the double count under
α = 0, this adds valuable information to the measurement exercise. On the flipside, α > 0 requires all
dimension-specific gaps to be informative, and hence qualitative outcomes can only enter the analysis
after some additional structure is imposed on them. We return to this point in our empirical exercise
below.

The AF index is consistent with ScI, Mo, Fo, Bo and Sy again under α > 0 . UH also holds if
α > 1, but only if the individual is under sufficient duress due to other k − 1 dimensions – otherwise,
deeper deprivation in any given dimension is entirely inconsequential when the number of dimensions in
poverty is less than k. Moreover, under the not uncommon linear case α = 1, sdei becomes constant and
AF loses all sensitivity to unidimensional hardship, except for the limiting case when the k boundary
is crossed.8 SUH is likewise violated if α = 1.

It will be interesting to note that AF can approach SUH for high values of α. Indeed, assuming at
least k dimensions exhibit poverty,

lim
α→0

(
sdei

)
=
{ ∞ if xid < xie

1 if xid = xie
0 if xid > xie

(18)

where xid > xie secures SUH if xid remains above destitution levels. However, we can also see in (18)
that in the case of AF, SUH comes at the cost of assuming perfect complementarity among dimensions.9
We think that such assumption can hardly be imposed to all contexts a priori.

Lastly, as in the α = 0 case, neither WTA nor STA is embraced. Altogether, we find the caveats for
the double counting index (for α = 0) remain valid under higher values of α.

5To see why, note that as long as the number of deprived dimensions is above the k-threshold, a rise from poverty
to no-poverty in the d-dimension requires the e-th dimension to switch in the opposite direction for mAF (0)

i to remain
unaltered. In turn, below the k-threshold a rise in xid has no impact on m

AF (0)
i , and so there is no need for xie to

change.
6Take xid = 1 and imagine that among all other dimensions, only z − 2 report unidimensional hardship. If xie = 0,

then a drop in xid down to 0 would take the individual up to the k-threshold. To keep mAF (0)
i unchanged, a switch in

xie from 0 to 1 would be necessary, and hence sdei = 1. However, if xie = 1, then sdei = 0, since the individual would be
too far from the threshold and the initial drop in xid would prove inconsequential.

7If among all dimensions other than d and e, only z − 2 report unidimensional hardship, then xie = 0 implies that
the double-counting index will fall sharply to 0 following a rise in xid from 0 to 1. With xie = 1, mAF (0)

i would remain
unaltered at 0 after a similar rise in xid – i.e. φde(xi; z) > 0 and the double-counting index would appeal to a policy-
maker with strong targeting ability. However, if only z− 1 other dimensions were in poverty, then WTA (φde(xi; z) < 0)
would result.

8See footnote 5.
9Graphically, (18) entails L-shaped isopoverty curves.
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4 Empirical application to the Peruvian CCT programme
To illustrate our proposal, we use data on Juntos, a CCT programme that every two months provides
poor households in Peru with 200 Peruvian Soles (about 75 USD in 2012). This transfer is conditional
on school-age children attending school, as well as infants and expectant mothers in the household
regularly attending health controls. Hence, r = 3 for this exercise, with consumption, education and
health-nutrition as the dimensions of interest. We compare our WTA index to AF both for α = 0 and
α = 1. As we pointed out in Subsection 3.1, the WTA index is the γ = 0 case of our measure, which is
a convenient choice when targeting ability is expected to be weak.

4.1 Description of programme
The National Programme for the Direct Support of the Poor, Juntos, was created in 2005 with the
goal of alleviating poverty and breaking its intergenerational transmission. The target group are poor
households in rural areas, with at least one person aged between 0 and 19 years or one expectant mother.
To receive aid, the household head must hold a valid ID and children must have birth certificates.

A household is eligible if its Household Targeting Index (IFH for the initials in Spanish) is below a
region-specific threshold. Although a multiplicity of variables take part in its construction, the IFH is
in essence an index of (unidimensional) consumption poverty, based on principal component analysis.
It takes values between 0 and 100, with higher values indicating better living conditions. In online
Appendix A, we show in detail how the IFH is constructed.

Beneficiaries receive 75 USD bimonthly, conditional on three requirements. First, children aged
between 6 and 14 years must be enrolled in a school and attend classes. Second, those aged between 0
and 5 years must regularly visit the doctor for check-ups. Third, pregnant women must attend periodic
health controls.

Official information reports that, as of December 2013, Juntos had 1, 570, 942 beneficiaries (1, 553, 772
young people aged up to 19 years and 17, 170 pregnant women) in more than 718, 000 households in 14
regions of the country.

4.2 Poverty estimates
We use a 2012 LSMS (Encuesta Nacional de Hogares) to measure hardship in each of the three dimen-
sions of interest to Juntos. In keeping with the rules of the programme, we focus on rural households
with at least one person aged between 0 and 19 years.10 The number of individuals in this subsample
is 32, 591, which represents one third of the entire survey.

Self-reported information raises moral hazard issues which have led practitioners to rely on veri-
fiable, unalterable indicators, rather than on dimensions outcomes as reported by applicants. This is
one of the reasons why we will use predicted values for the outcomes of all our three dimensions, based
on regressions we report in Appendix B – in the case of health, we resort to out-of-sample estimates
from the 2012 round of the national survey on health and economic conditions, since our LSMS lacks
information on infant health. A further reason is related to the smoothness of the histograms of both
predicted outcomes and the corresponding poverty estimates, which we discuss next. Figure 1 reports
the histogram of each (censored) predicted outcome for deprived individuals (i.e. x̃id < 1):

10Unfortunately, our LSMS does not identify pregnant women.
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Figure 1: Poverty measures of deprived individuals by dimension
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We now compute the WTA index for the Juntos case, as well as to AF indices that will act as
benchmarks for our empirical assessment: AF(0) and AF(1), with k = 2.11 To compute the WTA
index, we simply apply the previous censored outcomes x̃id in equation (15) with γ = 0 and β = 1

3 .
Similarly, the AF(α) index with α = 0, and α = 1. Figure 2 presents histograms for the resulting
indices. Each index identifies a group of individuals free from poverty, but little is comparable beyond
this. Interestingly, only our WTA index and the double counting index AF(0) reach the upper limit of
their range, thereby singling out individuals in severe multidimensional poverty. However, unlike AF(0)
but similarly to AF(1), WTA reacts relatively smoothly to marginal changes in a potential cutoff to
select beneficiaries. This smoothness is not trivial in the context of targeting, since abrupt reactions
could unleash pressures (from within and without the policy-making group) to challenge the threshold
and adjust it slightly so as to accommodate more beneficiaries.

Figure 2: Multidimensional poverty measures
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4.3 Multidimensional indices as targeting tools
We turn to assess how these indices perform as targeting tools. In the case of our proposed measure,
we use the WTA version (that is, γ = 0), on the assumption that imperfect targeting ability is the
right guess for Peru. Our exercise will be twofold. First, we pay attention to those who suffer evident
hardship, and yet an index-based ranking discards them as beneficiaries. Second, we look into waste-
ful spending, as indices do signal individuals who can be hardly said to live in destitution as beneficiaries.

While our assessment thus echoes the usual concern for two types of targeting errors (undercoverage
and leakages, respectively), we stress that to our knowledge, no agreed definitions of undercoverage and
leakage exist when poverty is multidimensional. With a given index acting as the one rightful norm,
then should-be beneficiaries and should-be non-beneficiaries could be defined as those on either side of
a threshold for that index. This approach is however unwarranted since no such ‘true’ multidimensional

11We keep k = 2 hereafter, which given r = 3 ensures the second AF cutoff is meaningful (k > 0) but not extreme
(k = 3).
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index exists, and indeed for comparison purposes, we need WTA and AF(α) to compete on equal footing.

In this exercise, we define undercoverage as failure to reach individuals suffering acute deprivation in
one or more dimensions – in practice, x̃id ≤ wu for any d, where we set wu = 0.15. 5,698 individuals in
our dataset (17% of the sample) endure such hardship. We keep the same parameters as in Subsection
4.2.

The first panel in Figure 3 shows the percentage of those should-be beneficiaries who are denied
access when the policy-maker defines her target as a given percentage of the poorest individuals ac-
cording to WTA or AF(α).12 Assume for instance that Juntos aims to cater for the poorest 20% of
the target population. If targeting followed the AF(α) index, then at least 30% of the 5,698 individuals
in acute deprivation would be excluded. If Juntos used the WTA instead, only about 10% of them
would be excluded. While undercoverage under AF(α) lessens as the programme increases the size of
the target population and approaches universal access, this index is outperformed by our WTA measure.

Figure 3: Undercoverage and leakage under individual targeting
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Likewise, our operational definition of leakage will be uncommitted to a particular multidimensional
index. Here, the should-be non-beneficiaries will be those with (standardised) outcomes above some
threshold in all three dimensions. In practice, x̃id = xid

zd
> wl for all d, and we set wl = 0.85 for this

exercise. The second panel of Figure 3 reports results for such leakages. Again, our WTA proposal
proves more efficient. For instance, consider that Juntos decides to cover the poorest 60% of the target
population. With AF(α), about 10% of beneficiaries would belong to our non-target group. When
the scope of the programme is restricted (for these parameters, when 50% or fewer of the poorest are
targeted), WTA and AF(1) are equally successful in mitigating leakage.

As we next consider geographical targeting, we keep the same operational definitions for under-
coverage (wu = 0.15) and leakage (wl = 0.85). To assess this case, we assume that once a region is
selected, no individual targeting is feasible within it, i.e. for each index, all 24 regions in the country
will be ranked, then only those with the highest measure of aggregate multidimensional poverty will be
selected, and lastly access will be granted randomly within each of them. The horizontal axes in Figure
4 allow for a range of choices about the number of regions where the programme will operate, taking 12
(out of 24) as the maximum number to keep the exercise realistic.

The first panel in Figure 4 reports the percentage of should-be beneficiaries who remain unaided as
the scope of the programme expands to more regions, following the ranking produced by each possible
index. We see that the policy-maker is never led to higher undercoverage with WTA, as compared
to AF(α). In particular, WTA proves more efficient than AF(0) throughout the relevant range, and
also more efficient than AF(1) when the budget constraint is tight and only allows the policy-maker to
operate in less than four regions. In the second panel, we report the percentage of non-target individuals

12Throughout, we let a random draw choose the beneficiary when the index at hand produces a tie among individuals.
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Figure 4: Undercoverage and leakage under geographical targeting
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in the selected regions, and again WTA largely performs at least as well as AF(α). Within the range
of 12 possible choices for the scope of the programme, each AF(0) and AF(1) exhibit lower expected
leakage than WTA for only one possible choice (9 targeted regions for AF(0), and 2 for AF(1)).

4.4 Simulations
Lastly, we explore whether our results for the Peruvian LSMS can be expected to obtain from other
samples. In addition to the analytical arguments in Section 2, we generate to this end samples of
individuals with random outcomes for each of three dimensions. Details can be found in our replication
package which includes the Stata code. Figure 5 shows the histograms of WTA loss points upon
producing 1, 000 graphs such as those in Figure 4, keeping their same parameter values.13 By ‘loss
points’, we mean that within the range of possible numbers of beneficiary regions (along the horizontal
axis in Figure 4), cases exist where AF(1) leads to lower errors (undercoverage or leakage) than WTA,
e.g. when targeting is geographical and two regions are selected, so that leakage is lowest under AF(1).
(The histograms for the comparison of WTA to AF(0) are not qualitatively different.)

Figure 5: Performance of WTA versus AF(1) under geographic targeting
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We see that our index only rarely leads to greater expected than AF(1). However, loss points are
more frequent in the case of leakage, as indeed Figure 4 shows for Juntos one such point out of 12

13γ = 0, β = 1
3 , k = 2, wu = 0.15, and wl = 0.85.
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possible choices, i.e. 8%. Our simulations suggest we should typically expect more loss points in other
samples, but the mode remains relatively low at 20%, and samples where loss points dominate are very
rare. In our exercises, these results held true for every set of parameter values we tried. For instance, the
panels in Figure 5 include largely similar histograms for other definitions of undercoverage (wu = 0, so
that there is a targeting error only if the unidimensional hardship of the unaided individual is extreme)
and leakage (wl = 1.0, so that an error exists only if the beneficiary is free poverty in every dimension).
Histograms for the case of individual targeting are not reported, but exhibit an even greater weight
near zero. As compared with AF1, the average frequencies of WTA loss points are 3.5% and 2.7% for
undercoverage and leakage, respectively.

5 Conclusion
In this paper, we have developed a novel approach to the measurement of multidimensional poverty,
focusing on the goals and needs of the policy-maker. We embedded the concerns of policy-makers into
our measure from the onset, i.e. from the specification of how individual achievements in each dimen-
sion impact on the assessment of their multidimensional poverty. Through this axiomatisation, we have
concluded that a homothetic specification will suit best theses concerns, and for simplicity, within the
set of homothetic functions, we have opted for a measure with a constant elasticity of substitution across
dimensions.

In particular, we have let our policy-maker be defined by two of her dominating concerns. She refuses
to deny aid to individuals in severe, evident unidimensional hardship, so that the technicalities of how
dimensions combine into a overall, multidimensional poverty should not thwart her efforts to cater for
these individuals. Also, our policy-maker is much aware of her own practical difficulties to ensure that
her targeted individuals become the actual beneficiaries of her programme. For this reason, and for her
risk aversion, the index should reduce her exposure to scenarios where she may easily waste resources
by allowing them to flow into the hands of non-targeted individuals. In practice, these two concerns are
pinned down by restrictions on the marginal rate of substitution (sde) and the cross-derivative (φde) of
our proposed index.

As we illustrate our proposal with LSMS data from Peru and also with randomly generated samples,
we have argued that this double emphasis of our approach should result in the reduction of targeting
errors. In fact, as we tested our index in the context of identifying beneficiaries of a CCT in Peru, and
our results suggested both undercoverage and leakage can be expected to lessen, at least as compared
with alternative Alkire-Foster indices.

By no means our paper aims to provide a definitive answer to the practical problem of targeting
when poverty is multidimensional, but we do intend to highlight the importance of bringing into the
debate the goals and needs of those running poverty alleviation programmes. A multidimensional mea-
sure will be of greater use to policy-makers, and of wider use among them, if their concerns and the
practicalities of their work are explicitly considered.
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Appendix A: Construction of the IFH index
The IFH index is a weighted sum of household characteristics, where the weights are area-specific. Ta-
bles I and II, taken from Bernal et al. (2017), present the complete list of variables, together with their
mutually-exclusive categories. The table also shows the three sets of area-specific weights: Metropolitan
Lima, other urban areas, and rural areas. Notice that higher weights correspond to better categories in
terms of welfare. Therefore, higher values of the IFH index indicate better living conditions.

In order to obtain an index ranging from 0 to 100, the weighted sum is standardized in each cluster
according to the following formula:

ifhij = 100 ∗
˜ifhij − ˜ifhminj

˜ifhmaxj − ˜ifhminj

,

where ifhij is the standardized IFH that lies in the interval [0, 100], ˜ifhij is the original weighted
sum of household characteristics, and ˜ifhminj and ˜ifhmaxj are the minimum and the maximum values of
the weighted sum in cluster j, respectively.

Individuals are eligible if their household index is below or equal to a cluster-specific threshold. Each
cluster identifies a geographic area, not necessarily connected, with similar monetary poverty in the year
2009.

Bernal et al. (2017) and especially SISFOH (2010) provide more details on the logic and construction
of the IFH index.

16



Table I: Variables and weights for IFH construction

Variables Metropolitan
Lima

Other urban areas Rural areas

Fuel used to cook
Do not cook -0.49 -0.67 -0.76
Other -0.40 -0.50 -0.38
Firewood -0.37 -0.33 0.05
Carbon -0.33 -0.22 0.36
Kerosine -0.29 -0.19 0.37
Gas 0.02 0.12 0.52
Electricity 0.43 0.69 0.52
Water supply in the home
Other -0.78 -0.58
River -0.65 -0.42
Well -0.62 -0.37
Water tanker -0.51 -0.34
Pipe -0.41 -0.32
Outside -0.35 -0.25
Inside 0.10 0.12
Wall material
Other -0.70 -0.80
Wood or mat -0.48 -0.55
Stone with mud -0.44 -0.46
Rushes covered with mud -0.41 -0.43
Clay -0.39 -0.38
Sun-dried brick or adobe -0.37 -0.20
Stones, lime or concrete -0.33 -0.07
Brick 0.10 0.25
Type of drainage
None -0.89 -0.68
River -0.75 -0.49
Sinkhole -0.59 -0.40
Septic tank -0.46 -0.30
Drainage system outside the house -0.39 -0.21
Drainage system inside the house 0.10 0.20
Number of members with health insurance
None -0.26 -0.25 -0.10
One -0.04 0.06 0.50
Two 0.06 0.17 0.59
Three 0.14 0.27 0.66
More than three 0.32 0.48 0.86
Goods that identify household wealth
None -0.47 -0.35 -0.11
One -0.17 0.05 0.64
Two 0.02 0.25 0.83
Three 0.15 0.40 0.90
Four 0.25 0.52 1.09
Five 0.47 0.75 1.09
Has fixed phone
Yes -0.32
No 0.20

Notes: Taken from Bernal et al. (2017). The original Spanish version corresponds to SISFOH (2010).
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Table II: Variables and weights for IFH construction (Continued)

Variables Metropolitan
Lima

Other urban areas Rural areas

Roof material
Other -0.86 -0.90
Straw -0.74 -0.72
Mat -0.67 -0.62
Woven cane -0.38 -0.23
Tiles -0.23 0.03
Wood or mat -0.21 0.07
Concrete 0.17 0.32
Education of the Household head
None -0.51 -0.57 -0.59
Preschool -0.43 -0.25 -0.08
Primary -0.28 0.01 0.35
Secondary -0.06 0.19 0.59
Vocational education (VET) 0.10 0.33 0.68
Undergraduate 0.22 0.55 0.88
Postgraduate 0.40 0.55 0.88
Floor material
Other -0.97 -1.12
Land -0.60 -0.47
Concrete -0.16 -0.01
Wood 0.08 0.30
Tiles 0.16 0.40
Vinyl sheets 0.28 0.51
Parquet 0.51 0.71
Overcrowding
More than six -0.68
Between four and six -0.51
Between two and four -0.31
Between one and two -0.07
Less than one 0.24
Highest level of education in the house
None -0.35
Primary 0.11
Secondary 0.41
Vocational education (VET) 0.62
Undergraduate 0.83
Electricity
No -0.29
Yes 0.22
Floor made of earth
Yes -0.17
No 0.47

Notes: Taken from Bernal et al. (2017). The original Spanish version corresponds to SISFOH (2010).
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Appendix B: Predicted values of dimension outcomes
The outcome xid for the education dimension we propose is a predicted value of years of schooling for
children between 6 and 14 years old from rural households. This is consistent with the first condition
of access to Juntos, which requires school enrollment and attendance for this group of children. Instead
of working with years of education directly, we survey the empirical literature for Peru to select a pool
of determinants of years of schooling, test them by means of a simple linear regression, and calculate
the predicted values. To avoid a moral hazard problem, we work with the predicted value instead of
the observed variable.14 The first column of Table III reports the OLS estimates.15 Finally, the natural
threshold zd for the education dimension is the number of years of education a child should have con-
sidering her age (in Peru, her age minus six).16 We set x̃id = 1 if the household does not have a child
between 6 and 14.

As the outcome xid for the health-nutrition dimension, we propose the predicted value of the height-
for-age z-score for children aged between 0 and 5 from rural households, which are required by Juntos
to attend health and growth checks. According to Martorell (1999), the height-for-age z-score captures
information as far back in the nutritional history of children as their the intrauterine period. We survey
the empirical literature for Peru to select a set of determinants of these z-scores, test them by means of
a simple linear regression on an ancillary dataset, and then use the estimated coefficients to compute
the predicted z-scores in our LSMS.17 The second column of Table III reports the OLS estimates we
use for this out-of-sample prediction.18 Finally, the poverty line zd for the health-nutrition dimension
is −2, as suggested by the WHO to identify chronic malnutrition.19

The outcome xid for the consumption dimension, in keeping with government practice, is the welfare
index IFH, currently used by Peruvian authorities to target Juntos beneficiaries. As threshold zd, we
use the average of the official cutoffs for the three geographic clusters where the target population of
Juntos is located.20

14In particular, a group of parents may want to drop their children out of school to get the monetary transfer.
15The unit of analysis is the rural household with at least one member aged between 6 and 14. In households with

more than one such child, the dependent variable is the average of their years of schooling.
16If there is more than one child in the age range, the average of the indicators is compared with the average of the

deprivation cutoffs.
17Our LSMS lacks information on z-scores, so we resort to the 2012 Encuesta Demográfica y de Salud Familiar. We

take the growth curve provided by the World Health Organization as reference to compute height deviations from age-sex
standards.

18In households with more than one child under 5, we take the average z-score.
19As in the case of education, we use averages if there is more than one child under five. Also, we impose x̃id = 1 if

the household does not have any child.
20The cutoffs are 36 in cluster 2, 34 in cluster 3 and 38 in cluster 4.
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Table III: Regression on years of education and z-score

Determinants Years of educationa Z-scoreb
I II

Parents characteristics
Father not at homec -0.066 -0.125**

(-0.054) (-0.055)
Mother not at homec -0.178

(-0.122)
Low education of motherd -0.202*** -0.311***

(-0.037) (-0.039)
Low education of fatherd -0.179***

(-0.036)
Household’s head age 0.005***

(-0.001)
No health insurance (except SIS) -0.189*

(-0.105)

Children characteristics
Number of male children aged 0-11 -0.068***

(-0.021)
Number of children aged 0-11 -0.196***

(-0.043)
Number of children 6-14 -0.065***

(-0.016)
Average age of children aged 6-14 0.878***

(-0.007)

Dwelling characteristics
Without tap water -0.518*

(-0.297)
Without sanitary sewer -0.136*** -0.233***

(-0.041) (-0.056)
No electricity -0.069*

(-0.038)
No cellphone or fixed phone line -0.150***

(-0.034)
Overcrowding -0.051*** -0.038***

(-0.01) (-0.012)
IFH index value 0.034***

(-0.005)
(IFH index value)2 -0.0003***

(0)
Constant -5.403*** -0.266

(-0.151) (-0.323)

Total Observation 4,688 3,076
R2 0.818 0.085
Log-Likelihood -6,145.94 -4,159.58
Notes: *** p<0.01, ** p<0.05, p<0.10. Standard error in parentheses. aEnaho (2012): sample of households with
at least one child between 6-14 years old. bEndes (2012): sample of households with at least one child between 0-5
years old. cIn the first regression, given that Enaho does not identify family relationship, we assume female household
head or female spouse as the mother. Similar procedure is followed in the case of the father. dIn the first regression,
it becomes 0 if there is no female household head, it is the following interaction: (1-female household head without
spouse)*(low education of the mother). Similar procedure is followed in the case of the father.
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